Chapter 4 线性回归

4.1 线性回归基本过程介绍

在正式进行线性回归分析前,一般建议对数据进行一些探索性的相关分析,可以通过散点图看看线性趋势。

进入“相关分析与散点图”模块后,仅需要选入x轴变量y轴变量,以及是否要在图中显示相关系数拟合趋势线

接着页面右侧就生成了对应的散点图!

图形中的线置信区间颜色均支持修改,默认情况下三者都是黑色。

完成相关分析与绘制散点图之后,我们就可以进行多重线性回归了!

4.2 线性回归自变量筛选

首先,选入变量,包括因变量、定量自变量、分类自变量

其次,选择自变量的筛选方式,包括P阈值,回归方法。

P阈值决定了单因素分析时,P值小于多少会进入多因素回归,一般为0.05,在变量过少时,也可以放宽要求,0.1,0.2也是有的。

回归方法有先单后多(选”否”),双向逐步回归,向前逐步回归,向后逐步回归,根据P<0.05筛选。

4.3 开展先单后多方法分析

根据研究需要,如果需要开展先单后多的自变量筛选方式,那么“是否开展逐步回归分析”选择”否”。P阈值自行选择,当选择不限制时,选入的全部变量都将纳入多因素回归分析。

4.4 开展逐步回归方法分析

逐步回归方法,平台也提供了多种选择:双向逐步回归,向前逐步回归,向后逐步回归以及考虑到有时P值大于阈值的变量在逐步回归时也会留在模型中,新增了根据P<0.05的原则开展逐步回归

注:先单后多与逐步回归是两种不同的自变量筛选方式,先单后多主要根据单因素P阈值进行筛选;逐步回归则是通过变量的逐个纳入与剔除,以AIC值最小作为最优模型选择准则。因此有些变量P值大于预设的阈值但仍保留在逐步回归模型中也是正常的哦,想要避免这种情况的发生,可以选择”根据P<0.05筛选”的逐步回归!

4.5 下载结果

平台给出了多种结果展示,仅展示单因素回归结果仅展示多因素回归结果单因素+多因素显示在同一张表格中!

然后也可以选择小数位数,默认情况下,P值为3位小数,其他统计量为2位小数。指定小数位数后,P值与统计量的小数位数将会统一。调整完成后,下载最终的三线表结果!

4.6 查看R语言分析源码

目前风暴统计平台还会给出R语言输出结果回归残差分析图方差膨胀因子(VIF)

这里简单解释一下方差膨胀因子:方差膨胀因子是检验自变量间共线性问题的常用方法,如果自变量间共线性过强,会导致分析结果不稳定,还可能出现回归系数的符号与实际情况完全相反的情况。